

dRest Documentation

dRest is a configurable HTTP/REST client library for Python. It’s goal is to
make the creation of API clients dead simple, without lacking features.

Key Features:

	Light-weight API Client Library, implementing REST by default

	Native support for the Django TastyPie API Framework

	Only one external dependency on httplib2

	Key pieces of the library are customizable by defined handlers

	Interface definitions ensure handlers are properly implemented

	Support for Python 2.6+ and Python 3+

	100% test coverage

Additional Links:

	RTFD: http://drest.rtfd.org/

	GITHUB: http://github.com/derks/drest/

	PYPI: http://pypi.python.org/pypi/drest/

Contents:

	License

	ChangeLog

	Contributor Credits

	Usage Documentation
	Installation

	Quickstart Guide

	Working With Django TastyPie

	Customizing dRest

	Debugging Requests

	API Documentation
	drest.api

	drest.exc

	drest.interface

	drest.meta

	drest.request

	drest.resource

	drest.serialization

Indices and tables

	Index

	Module Index

	Search Page

License

Copyright (c) 2011-2012, BJ Dierkes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of BJ Dierkes nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ChangeLog

All bugs/feature details can be found at:

https://github.com/derks/drest/issues/XXXXX

Where XXXXX is the ‘Issue #’ referenced below. Additionally, this change log
is available online at:

http://drest.readthedocs.org/en/latest/changelog.html

0.9.6 - Mar 23, 2012

Bug Fixes:

	Issue #9 [https://github.com/derks/drest/issues/9] - GET params incorrectly stored as permanent
_extra_url_params.

Feature Enhancements:

	Issue #4 [https://github.com/derks/drest/issues/4] - Better support for nested resource names.

	Issue #5 [https://github.com/derks/drest/issues/5], Issue #8 [https://github.com/derks/drest/issues/8] - Request object is now exposed publicly.

	Issue #6 [https://github.com/derks/drest/issues/6] - Add capability to suppress final forward-slash

	Issue #7 [https://github.com/derks/drest/issues/7] - Cache http object for improved performance.

Incompatible Changes:

	api._request is now api.request. api.request (old function) is now
api.make_request()

	Lots of code refactoring.. numerous minor changes may break
compatibility if using backend functions, but not likely if accessing
the high level api functions.

	Every request now returns a drest.response.ResponseHandler object
rather than a (response, data) tuple.

0.9.4 - Feb 16, 2012

Bug Fixes:

	Issue #3 [https://github.com/derks/drest/issues/3] - TypeError: object.__init__() takes no parameters

Feature Enhancements:

	Improved test suite, now powered by Django TastyPie!

	Added support for Basic HTTP Auth.

Incompatible Changes:

	drest.api.API.auth() now implements Basic HTTP Auth by default rather
than just appending the user/password/etc to the URL.

 Contributor Credits

Contributor Credits

	Andrew Alcock

 Usage Documentation

Usage Documentation

Contents:

	Installation

	Quickstart Guide

	Working With Django TastyPie

	Customizing dRest

	Debugging Requests

 Installation

Installation

The following outlines installation of dRest. It is recommended to work out
of a VirtualENV [http://pypi.python.org/pypi/virtualenv]
for development, which is reference throughout this documentation. VirtualENV
is easily installed on most platforms either with ‘easy_install’ or ‘pip’ or
via your OS distributions packaging system (yum, apt, brew, etc).

Creating a Virtual Environment

$ virtualenv --no-site-packages ~/env/drest/

$ source ~/env/drest/bin/activate

When installing drest, ensure that your development environment is active
by sourcing the activate script (as seen above).

Installing Development Version From Git

(drest) $ git clone git://github.com/derks/drest.git

(drest) $ cd src/drest/

(drest) $ python setup.py install

To run tests, do the following from the ‘root’ directory:

(drest) $ pip install nose

(drest) $ python setup.py nosetests

Installing Stable Versions From PyPi

(drest) $ pip install drest

Running Unit Tests

Unit tests should be run to ensure dRest is completely functional on your
system:

(drest) $./utils/run_tests.sh

For Python 3 testing, you will need to run ‘drest.mockapi’ manually via a
seperate virtualenv setup for Python 2.6+ (in a separate terminal), and then
run the test suite with the option ‘–without-mockapi’:

Terminal 1:

$ virtualenv-2.7 ~/env/drest-py27/

$ source ~/env/drest-py27/bin/activate

(drest-py27) $ cd src/drest.mockapi/mockapi

(drest-py27) $ python manage.py testserver

Terminal 2:

$ virtualenv-3.2 ~/env/drest-py32/

$ source ~/env/drest-py32/bin/activate

(drest-py32) $./utils/run_tests.sh --without-mockapi

 Quickstart Guide

Quickstart Guide

A REST Client Example

Note that the following is all fictitious data. What is received from and
sent to an API is unique to every API. Do not copy and paste these examples.

Connecting with an API

import drest
api = drest.API('http://localhost:8000/api/v1/')

Authentication

By default, drest.api.API.auth() implements HTTP Basic Authentication. This
is generally overridden however by specific API’s that subclass from api.API().

api.auth('john.doe', 'my_password')

Note that authentication may not be necessary for your use case, or for
read-only API’s.

Making Requests

Requests can be made openly by specifying the method
(GET, PUT, POST, DELETE, ...), as well as the path (after the baseurl).

GET http://localhost:8000/api/v1/users/1/
response = api.make_request('GET', '/users/1/')

Additionally, you can add a resource which makes access to the API more
native and programatic.

Add a basic resource (assumes path='/users/')
api.add_resource('users')

A list of available resources is available at:
api.resources

GET http://localhost:8000/api/v1/users/
response = api.users.get()

GET http://localhost:8000/api/v1/users/1/
response = api.users.get(1)

Creating a resource only requires a dictionary of ‘parameters’ passed to the
resource:

user_data = dict(
 username='john.doe',
 password='oober-secure-password',
 first_name='John',
 last_name='Doe',
)

POST http://localhost:8000/api/v1/users/
response = api.users.post(user_data)

Updating a resource is as easy as requesting data for it, modifying it, and
sending it back

response = api.users.get(1)
updated_data = response.data.copy()
updated_data['first_name'] = 'John'
updated_data['last_name'] = 'Doe'

PUT http://localhost:8000/api/v1/users/1/
response = api.users.put(1, updated_data)

Deleting a resource simply requires the primary key:

DELETE http://localhost:8000/api/v1/users/1/
response = api.users.delete(1)

Working With Return Data

Every call to an API by default returns a drest.response.ResponseHandler
object. The two most useful members of this object are:

	response.status (http status code)

	response.data (the data returned by the api)

If a serialization handler is used, then response.data will be the
unserialized form (Python dict).

The Response Object

response = api.users.get()
response.status # 200
response.data # dict

Developers can base conditions on the status of the response (or other
fields):

response = api.users.get()
if response.status != 200:
 print 'Uhoh.... we didn't get a good response.'

The data returned from a request is the data returned by the API. This is
generally JSON, YAML, XML, etc... however if a Serialization handler is
enabled, this will be a python dictionary. See drest.serialization.

response.data:

{
 u'meta':
 {
 u'previous': None,
 u'total_count': 3,
 u'offset': 0,
 u'limit': 20,
 u'next':
 None
 },
 u'objects':
 [
 {
 u'username': u'john.doe',
 u'first_name': u'John',
 u'last_name': u'Doe',
 u'resource_pk': 2,
 u'last_login': u'2012-01-26T01:21:20',
 u'resource_uri': u'/api/v1/users/2/',
 u'id': u'2',
 u'date_joined': u'2008-09-04T14:25:29'
 }
]
}

The above is fictitious data returned from a TastyPie API. What is returned
by an API is unique to that API therefore you should expect the ‘data’ to be
different that the above.

Connecting Over SSL

Though this is documented elsewhere, it is a pretty common question. Often
times API services are SSL enabled (over https://) but do not possess a valid
or active SSL certificate. Anytime an API service has an invalid, or usually
self-signed certificate, you will receive an SSL error similar to:

[Errno 1] _ssl.c:503: error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed

In order to work around such situations, simply pass the following to your
api:

api = drest.API('https://example.com/api/v1/', ignore_ssl_validation=True)

 Working With Django TastyPie

Working With Django TastyPie

dRest includes an API specifically built for the
Django TastyPie [http://django-tastypie.readthedocs.org/] API framework.
It handles auto-detection of resources, and their schema, as well as
other features to support the interface including getting resource data
by ‘resource_uri’.

API Reference

	drest.api.TastyPieAPI

	drest.request.TastyPieRequestHandler

	drest.resource.TastyPieResourceHandler

 Customizing dRest

Customizing dRest

Every piece of dRest is completely customizable by way of ‘handlers’.

API Reference:

	drest.api

	drest.resource

	drest.request

	drest.response

	drest.serialization

Example

The following is just a quick glance at what it would look to chain together
a custom Serialization Handler, Request Handler, Resource Handler, and
finally a custom API client object. This is not meant to be comprehensive
by any means. In the real world, you will need to read the source code
documentation listed above and determine a) what you need to customize, and
b) what functionality you need to maintain.

import drest

class MySerializationHandler(drest.serialization.SerializationHandler):
 def serialize(self, data_dict):
 # do something to serialize data dictionary
 pass

 def deserialize(self, serialized_data):
 # do something to deserialize data
 pass

class MyResponseHandler(drest.response.ResponseHandler)
 def __init__(self, status, data, **kw):
 super(MyResponseHandler, self).__init__(status, data, **kw)
 # do something to customize the response handler

class MyRequestHandler(drest.request.RequestHandler):
 class Meta:
 serialization_handler = MySerializationHandler
 response_handler = MyResponseHandler

 def handle_response(self, response):
 # do something to wrape every response
 pass

class MyResourceHandler(drest.resource.ResourceHandler):
 class Meta:
 request_handler = MyRequestHandler

 def some_custom_function(self, params={}):
 # do some kind of custom api call
 return self.request('GET', '/users/some_custom_function', params)

class MyAPI(drest.api.API):
 class Meta:
 baseurl = 'http://example.com/api/v1/'
 resource_handler = MyResourceHandler
 request_handler = MyRequestHandler

 def auth(self, *args, **kw):
 # do something to customize authentication
 pass

api = MyAPI()

Add resources
api.add_resource('users')
api.add_resource('projects')

GET http://example.com/api/v1/users/
api.users.get()

GET http://example.com/api/v1/users/133/
api.users.get(133)

PUT http://example.com/api/v1/users/133/
api.users.put(133, data_dict)

POST http://example.com/api/v1/users/
api.users.post(data_dict)

DELETE http://example.com/api/v1/users/133/
api.users.delete(133)

GET http://example.com/api/v1/users/some_custom_function/
api.users.some_custom_function()

Note that the id ‘133’ above is the fictitious id of a user resource.

 Debugging Requests

Debugging Requests

Often times in development, making calls to an API can be obscure and
difficult to work with especially when receiving 500 Internal Server Errors
with no idea what happens. In browser development, most frameworks like
Django or the like provide some sort of debugging interface allowing
developers to analyze tracebacks, and what not. Not so much when developing
command line apps or similar.

Enabling Debug Output

In order to enable DEBUG output for every request, simply set the ‘DREST_DEBUG’
environment variable to 1:

$ set DREST_DEBUG=1

$ python test.py
DREST_DEBUG: method=POST url=http://localhost:8000/api/v0/systems/ params={} headers={'Content-Type': 'application/json', 'Authorization': 'ApiKey john.doe:XXXXXXXXXXXX'}

In the above, test.py just made a simple api.system.post() call which
triggered DREST_DEBUG output. In the output you have access to a number of
things:

	method

	This is the method used to make the request.

	url

	The full url path of the request

	params

	Any parameters passed with the request

	headers

	Any headers passed with the request

Once done debugging, just disable DREST_DEBUG:

$ unset DREST_DEBUG

Viewing Upstream Tracebacks

If the error is happening server side, like a 500 Internal Server Error, you
will likely receive a traceback in the return content (at least during
development). This of course depends on the API you are developing against,
however the following is common practice in development:

try:
 response = api.my_resource.get()
except drest.exc.dRestRequestError as e:
 print e.response.status
 print e.response.data

The above gives you the response object, as well as the content (data)... this
is useful because the exception is triggered in drest code and not your own
(therefore bringing the response object back down the stack where you can
use it).

 API Documentation

API Documentation

drest.api

dRest core API connection library.

	
class drest.api.API(baseurl=None, **kw)

	The API class acts as a high level ‘wrapper’ around multiple lower level
handlers. Most of the meta arguments are optionally passed to one or
more handlers upon instantiation. All handler classes must be passed
un-instantiated.

Arguments:

	baseurl

	Translated to self.baseurl (for convenience).

Optional Arguments and Meta:

	debug

	Boolean. Toggle debug console output. Default: False.

	baseurl

	The base url to the API endpoint.

	request_handler

	The Request Handler class that performs the actual HTTP (or other)
requests. Default: drest.request.RequestHandler.

	resource_handler

	The Resource Handler class that is used when api.add_resource is
called. Default: drest.resource.ResourceHandler.

	response_handler

	An un-instantiated Response Handler class used to return
responses to the caller. Default: drest.response.ResponseHandler.

	serialization_handler

	An un-instantiated Serialization Handler class used to
serialize/deserialize data.
Default: drest.serialization.JsonSerializationHandler.

	ignore_ssl_validation

	Boolean. Whether or not to ignore ssl validation errors.
Default: False

	serialize

	Boolean. Whether or not to serialize data before sending
requests. Default: False.

	deserialize

	Boolean. Whether or not to deserialize data before returning
the Response object. Default: True.

	trailing_slash

	Boolean. Whether or not to append a trailing slash to the
request url. Default: True.

	extra_headers

	A dictionary of key value pairs that are added to the HTTP headers
of every request. Passed to request_handler.add_header().

	extra_params

	A dictionary of key value pairs that are added to the POST, or
‘payload’ data sent with every request. Passed to
request_handler.add_param().

	extra_url_params

	A dictionary of key value pairs that are added to the GET/URL
parameters of every request. Passed to
request_handler.add_extra_url_param().

Usage

import drest

Create a generic client api object
api = drest.API('http://localhost:8000/api/v1/')

Or something more customized:
api = drest.API(
 baseurl='http://localhost:8000/api/v1/',
 trailing_slash=False,
 ignore_ssl_validation=True,
)

Or even more so:
class MyAPI(drest.API):
 class Meta:
 baseurl = 'http://localhost:8000/api/v1/'
 extra_headers = dict(MyKey='Some Value For Key')
 extra_params = dict(some_param='some_value')
 request_handler = MyCustomRequestHandler
api = MyAPI()

By default, the API support HTTP Basic Auth with username/password.
api.auth('john.doe', 'password')

Make calls openly
response = api.make_request('GET', '/users/1/')

Or attach a resource
api.add_resource('users')

Get available resources
api.resources

Get all objects of a resource
response = api.users.get()

Get a single resource with primary key '1'
response = api.users.get(1)

Update a resource with primary key '1'
response = api.users.get(1)
updated_data = response.data.copy()
updated_data['first_name'] = 'John'
updated_data['last_name'] = 'Doe'

response = api.users.put(data['id'], updated_data)

Create a resource
user_data = dict(
 username='john.doe',
 password='oober-secure-password',
 first_name='John',
 last_name='Doe',
)
response = api.users.post(user_data)

Delete a resource with primary key '1'
response = api.users.delete(1)

	
add_resource(name, resource_handler=None, path=None)

	Add a resource handler to the api object.

Required Arguments:

	name

	The name of the resource. This is generally the basic name
of the resource on the API. For example ‘/api/v0/users/’
would likely be called ‘users’ and will be accessible as
‘api.users’ from which additional calls can be made. For
example ‘api.users.get()’.

Optional Arguments:

	resource_handler

	The resource handler class to use. Defaults to
self._meta.resource_handler.

	path

	The path to the resource on the API (after the base url).
Defaults to ‘/<name>/’.

Nested Resources:

It is possible to attach resources in a ‘nested’ fashion. For example
passing a name of ‘my.nested.users’ would be accessible as
api.my.nested.users.get().

Usage:

api.add_resource('users')
response = api.users.get()

Or for nested resources
api.add_resource('my.nested.users', path='/users/')
response = api.my.nested.users.get()

	
auth(user, password, **kw)

	This authentication mechanism implements HTTP Basic Authentication.

Required Arguments:

	user

	The API username.

	password

	The password of that user.

	
class drest.api.TastyPieAPI(*args, **kw)

	This class implements an API client, specifically tailored for
interfacing with TastyPie [http://django-tastypie.readthedocs.org/en/latest].

Optional / Meta Arguments:

	auth_mech

	The auth mechanism to use. One of [‘basic’, ‘api_key’].
Default: ‘api_key’.

	auto_detect_resources

	Boolean. Whether or not to auto detect, and add resource objects
to the api. Default: True.

Authentication Mechanisms

Currently the only supported authentication mechanism are:

	ApiKeyAuthentication

	BasicAuthentication

Usage

Please note that the following example use ficticious resource data.
What is returned, and sent to the API is unique to the API itself. Please
do not copy and paste any of the following directly without modifying the
request parameters per your use case.

Create the client object, and authenticate with a user/api_key pair by
default:

import drest
api = drest.api.TastyPieAPI('http://localhost:8000/api/v0/')
api.auth('john.doe', '34547a497326dde80bcaf8bcee43e3d1b5f24cc9')

OR authenticate against HTTP Basic Auth:

import drest
api = drest.api.TastyPieAPI('http://localhost:8000/api/v0/',
 auth_mech='basic')
api.auth('john.doe', 'my_password')

As drest auto-detects TastyPie resources, you can view those at:

api.resources

And access their schema:

api.users.schema

As well as make the usual calls such as:

api.users.get()
api.users.get(<pk>)
api.users.put(<pk>, data_dict)
api.users.post(data_dict)
api.users.delete(<pk>)

What about filtering? (these depend on how the API is configured [http://django-tastypie.readthedocs.org/en/latest/resources.html#basic-filtering]):

api.users.get(params=dict(username='admin'))
api.users.get(params=dict(username__icontains='admin'))
...

See drest.api.API for more standard usage examples.

	
auth(*args, **kw)

	Authenticate the request, determined by Meta.auth_mech. Arguments
and Keyword arguments are just passed to the auth_mech function.

	
find_resources()

	Find available resources, and add them via add_resource().

drest.exc

	
exception drest.exc.dRestAPIError(msg)

	dRest API Errors.

	
exception drest.exc.dRestError(msg)

	Generic dRest Errors.

	
exception drest.exc.dRestInterfaceError(msg)

	dRest Interface Errors.

	
exception drest.exc.dRestRequestError(msg, response)

	dRest Request Errors.

	
exception drest.exc.dRestResourceError(msg)

	dRest Resource Errors.

drest.interface

	
class drest.interface.Attribute(description)

	Defines an Interface attribute.

Usage:

from drest import interface

class MyInterface(interface.Interface):
 my_attribute = interface.Attribute("A description of my_attribute.")

	
class drest.interface.Interface

	This is an abstract base class that all interface classes should
subclass from.

	
drest.interface.validate(interface, obj, members, metas=[])

	A wrapper to validate interfaces.

Required Arguments:

	interface

	The interface class to validate against

	obj

	The object to validate.

	members

	A list of object members that must exist.

Optional Arguments:

	metas

	A list of meta parameters that must exist.

drest.meta

dRest core meta functionality. Barrowed from http://slumber.in/.

	
class drest.meta.Meta(**kw)

	Model that acts as a container class for a meta attributes for a larger
class. It stuffs any kwarg it gets in it’s init as an attribute of itself.

	
class drest.meta.MetaMixin(*args, **kw)

	Mixin that provides the Meta class support to add settings to instances
of slumber objects. Meta settings cannot start with a _.

drest.request

	
class drest.request.IRequest

	This class defines the Request Handler Interface. Classes that
implement this handler must provide the methods and attributes defined
below.

All implementations must provide sane ‘default’ functionality when
instantiated with no arguments. Meaning, it can and should accept
optional parameters that alter how it functions, but can not require
any parameters.

Implementations do not subclass from interfaces.

	
add_header(key, value)

	Add extra headers to pass along with every request.

Required Arguments:

	key

	The key of the header to add.

	value

	The value of the header to add.

	
add_param(key, value)

	Add extra parameters to pass along with every request.
These are passed with the request ‘payload’ (serialized if a
serialization handler is enabled). With GET requests they are
appended to the URL.

Required Arguments:

	key

	The key of the parameter to add.

	value

	The value of the parameter to add.

	
add_url_param(key, value)

	Similar to ‘add_params’, however this function adds extra parameters
to the url for every request.
These are not passed with the request ‘payload’ (serialized if a
serialization handler is enabled) except for GET requests.

Required Arguments:

	key

	The key of the parameter to add.

	value

	The value of the parameter to add.

	
handle_response(response_object)

	Called after the request is made. This is a convenient place for
developers to handle what happens during every request per their
application needs.

Required Arguments:

	response_object

	The response object created by the request.

	
make_request(method, path, params={}, headers={})

	Make a request with the upstream API.

Required Arguments:

	method

	The HTTP method to request as. I.e. [‘GET’, ‘POST’, ‘PUT’,
‘DELETE’, ‘...’].

	path

	The of the request url after the baseurl.

Optional Arguments:

	params

	Parameters to pass with the request. These will be serialized
if configured to serialize.

	headers

	Headers to pass to the request.

	
class drest.request.RequestHandler(**kw)

	Generic class that handles HTTP requests. Uses the Json Serialization
handler by default, but only ‘deserializes’ response content.

Optional Arguments / Meta:

	debug

	Boolean. Toggle debug console output. Default: False.

	ignore_ssl_validation

	Boolean. Whether or not to ignore ssl validation errors.
Default: False

	response_handler

	An un-instantiated Response Handler class used to return
responses to the caller. Default: drest.response.ResponseHandler.

	serialization_handler

	An un-instantiated Serialization Handler class used to
serialize/deserialize data.
Default: drest.serialization.JsonSerializationHandler.

	serialize

	Boolean. Whether or not to serialize data before sending
requests. Default: False.

	deserialize

	Boolean. Whether or not to deserialize data before returning
the Response object. Default: True.

	trailing_slash

	Boolean. Whether or not to append a trailing slash to the
request url. Default: True.

	
add_header(key, value)

	Adds a key/value to self._extra_headers, which is sent with every
request.

Required Arguments:

	key

	The key of the parameter.

	value

	The value of ‘key’.

	
add_param(key, value)

	Adds a key/value to self._extra_params, which is sent with every
request.

Required Arguments:

	key

	The key of the parameter.

	value

	The value of ‘key’.

	
add_url_param(key, value)

	Adds a key/value to self._extra_url_params, which is sent with every
request (in the URL).

Required Arguments:

	key

	The key of the parameter.

	value

	The value of ‘key’.

	
handle_response(response_object)

	A simple wrapper to handle the response. By default raises
exc.dRestRequestError if the response code is within 400-499, or 500.
Must return the original, or modified, response object.

Required Arguments:

	response_object

	The response object created by the request.

	
make_request(method, url, params={}, headers={})

	Make a call to a resource based on path, and parameters.

Required Arguments:

	method

	One of HEAD, GET, POST, PUT, PATCH, DELETE, etc.

	url

	The full url of the request (without any parameters). Any
params (with GET method) and self.extra_url_params will be
added to this url.

Optional Arguments:

	params

	Dictionary of additional (one-time) keyword arguments for the
request.

	headers

	Dictionary of additional (one-time) headers of the request.

	
set_auth_credentials(user, password)

	Set the authentication user and password that will be used for
HTTP Basic and Digest Authentication.

Required Arguments:

	user

	The authentication username.

	password

	That user’s password.

	
class drest.request.TastyPieRequestHandler(**kw)

	This class implements the IRequest interface, specifically tailored for
interfacing with TastyPie [http://django-tastypie.readthedocs.org/en/latest].

See drest.request.RequestHandler for Meta options and usage.

	
drest.request.validate(obj)

	Validates a handler implementation against the IRequest interface.

drest.resource

	
class drest.resource.IResource

	This class defines the Resource Handler Interface. Classes that
implement this handler must provide the methods and attributes defined
below.

All implementations must provide sane ‘default’ functionality when
instantiated with no arguments. Meaning, it can and should accept
optional parameters that alter how it functions, but can not require
any parameters.

Implementations do not subclass from interfaces.

	
class drest.resource.RESTResourceHandler(api_obj, name, path, **kw)

	This class implements the IResource interface, specifically for
interacting with REST-like resources. It provides convenient functions
that wrap around the typical GET, PUT, POST, DELETE actions.

Optional Arguments / Meta:

	api_obj

	The api (parent) object that this resource is being attached to.

	name

	The name of the resource on the API.

	path

	The path to the resource (after api.baseurl).

Usage:

import drest

class MyAPI(drest.api.API):
 class Meta:
 resource_handler = drest.resource.RESTResourceHandler
...

	
create(params={})

	A synonym for self.post().

	
delete(resource_id, params={})

	Delete resource record.

Required Arguments:

	resource_id

	The resource id

Optional Arguments:

	params

	Some resource might allow additional parameters. For example,
the user resource has a ‘rdikwid’ (really delete I know what
I’m doing) option which causes a user to really be deleted
(normally deletion only sets the status to ‘Deleted’).

	
filter(params)

	Give the ability to alter params before sending the request.

Required Arguments:

	params

	The list of params that will be passed to the endpoint.

	
get(resource_id=None, params={})

	Get all records for a resource, or a single resource record.

Optional Arguments:

	resource_id

	The resource id (may also be a label in some environments).

	params

	Additional request parameters to pass along.

	
post(params={})

	Create a new resource.

Required Arguments:

	params

	A dictionary of parameters (different for every resource).

	
put(resource_id, params={})

	Update an existing resource.

Required Arguments:

	resource_id

	The id of the resource to update.

	params

	A dictionary of parameters (different for every resource).

	
update(resource_id, params={})

	A synonym for self.put().

	
class drest.resource.ResourceHandler(api_obj, name, path, **kw)

	This class acts as a base class that other resource handler should
subclass from.

	
class drest.resource.TastyPieResourceHandler(api_obj, name, path, **kw)

	This class implements the IResource interface, specifically tailored for
interfacing with TastyPie [http://django-tastypie.readthedocs.org/en/latest].

	
get_by_uri(resource_uri, params={})

	A wrapper around self.get() that accepts a TastyPie ‘resource_uri’
rather than a ‘pk’ (primary key).

Required Arguments:

	resource_uri

	The Resource URI to GET.

Optional Arguments

	params

	All additional keyword arguments are passed as extra request
parameters.

Usage

import drest
api = drest.api.TastyPieAPI('http://localhost:8000/api/v0/')
api.auth(user='john.doe', api_key='34547a497326dde80bcaf8bcee43e3d1b5f24cc9')
response = api.users.get_by_uri('/api/v1/users/234/')

	
schema

	Returns the resources schema.

	
drest.resource.validate(obj)

	Validates a handler implementation against the IResource interface.

drest.serialization

	
class drest.serialization.ISerialization

	This class defines the Serialization Handler Interface. Classes that
implement this handler must provide the methods and attributes defined
below.

All implementations must provide sane ‘default’ functionality when
instantiated with no arguments. Meaning, it can and should accept
optional parameters that alter how it functions, but can not require
any parameters.

Implementations do not subclass from interfaces.

	
deserialize()

	Load a serialized string and return a dictionary of key/value pairs.

Required Arguments:

	serialized_data

	A string of serialzed data.

Returns: dict

	
get_headers()

	Return a dictionary of additional headers to include in requests.

	
serialize()

	Dump a dictionary of values from a serialized string.

Required Arguments:

	data_dict

	A data dictionary to serialize.

Returns: string

	
class drest.serialization.JsonSerializationHandler(**kw)

	This handler implements the ISerialization interface using the standard
json library.

	
class drest.serialization.SerializationHandler(**kw)

	Generic Serialization Handler. Should be used to subclass from.

	
drest.serialization.validate(obj)

	Validates a handler implementation against the ISerialize interface.

 Python Module Index

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 drest	

 	
 	
 drest.api	

 	
 	
 drest.exc	

 	
 	
 drest.interface	

 	
 	
 drest.meta	

 	
 	
 drest.request	

 	
 	
 drest.resource	

 	
 	
 drest.serialization	

 Index

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | J
 | M
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_header() (drest.request.IRequest method)

 	(drest.request.RequestHandler method)

 	add_param() (drest.request.IRequest method)

 	(drest.request.RequestHandler method)

 	add_resource() (drest.api.API method)

 	
 	add_url_param() (drest.request.IRequest method)

 	(drest.request.RequestHandler method)

 	API (class in drest.api)

 	Attribute (class in drest.interface)

 	auth() (drest.api.API method)

 	(drest.api.TastyPieAPI method)

C

 	
 	create() (drest.resource.RESTResourceHandler method)

D

 	
 	delete() (drest.resource.RESTResourceHandler method)

 	deserialize() (drest.serialization.ISerialization method)

 	drest.api (module)

 	drest.exc (module)

 	drest.interface (module)

 	drest.meta (module)

 	drest.request (module)

 	
 	drest.resource (module)

 	drest.serialization (module)

 	dRestAPIError

 	dRestError

 	dRestInterfaceError

 	dRestRequestError

 	dRestResourceError

F

 	
 	filter() (drest.resource.RESTResourceHandler method)

 	
 	find_resources() (drest.api.TastyPieAPI method)

G

 	
 	get() (drest.resource.RESTResourceHandler method)

 	
 	get_by_uri() (drest.resource.TastyPieResourceHandler method)

 	get_headers() (drest.serialization.ISerialization method)

H

 	
 	handle_response() (drest.request.IRequest method)

 	(drest.request.RequestHandler method)

I

 	
 	Interface (class in drest.interface)

 	IRequest (class in drest.request)

 	
 	IResource (class in drest.resource)

 	ISerialization (class in drest.serialization)

J

 	
 	JsonSerializationHandler (class in drest.serialization)

M

 	
 	make_request() (drest.request.IRequest method)

 	(drest.request.RequestHandler method)

 	
 	Meta (class in drest.meta)

 	MetaMixin (class in drest.meta)

P

 	
 	post() (drest.resource.RESTResourceHandler method)

 	
 	put() (drest.resource.RESTResourceHandler method)

R

 	
 	RequestHandler (class in drest.request)

 	
 	ResourceHandler (class in drest.resource)

 	RESTResourceHandler (class in drest.resource)

S

 	
 	schema (drest.resource.TastyPieResourceHandler attribute)

 	SerializationHandler (class in drest.serialization)

 	
 	serialize() (drest.serialization.ISerialization method)

 	set_auth_credentials() (drest.request.RequestHandler method)

T

 	
 	TastyPieAPI (class in drest.api)

 	
 	TastyPieRequestHandler (class in drest.request)

 	TastyPieResourceHandler (class in drest.resource)

U

 	
 	update() (drest.resource.RESTResourceHandler method)

V

 	
 	validate() (in module drest.interface)

 	(in module drest.request)

 	(in module drest.resource)

 	(in module drest.serialization)

_static/up.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

nav.xhtml

 Table of Contents

 		dRest Documentation

 		License

 		ChangeLog

 		0.9.6 - Mar 23, 2012

 		0.9.4 - Feb 16, 2012

 		0.9.2 - Feb 01, 2012

 		Contributor Credits

 		Usage Documentation

 		Installation

 		Creating a Virtual Environment

 		Installing Development Version From Git

 		Installing Stable Versions From PyPi

 		Running Unit Tests

 		Quickstart Guide

 		A REST Client Example

 		Working With Return Data

 		Connecting Over SSL

 		Working With Django TastyPie

 		API Reference

 		Customizing dRest

 		Example

 		Debugging Requests

 		Enabling Debug Output

 		Viewing Upstream Tracebacks

 		API Documentation

 		drest.api

 		drest.exc

 		drest.interface

 		drest.meta

 		drest.reques