dRest Documentation
Release 0.9.13

BJ Dierkes

January 21, 2014

Contents

1 License 3
2 ChangeLog 5
2.1 0.9.13 - development (will be released as 0.9.140r 1.0.0) L. 5
2.2 09.12-Nov 12,2013 . . . o . e e e e e e e e e e e 5
23 0.9.10-Jul 18,2012 e e e e e e 5
24 0.9.8-Jul02,2012 e e e e e 6
25 0.9.6-Mar23,2012 e e e e 6
2.6 0.9.4-Feb 16,2012 e e e e e e e e 6
2.7 09.2-Feb 01,2012 e e e e e e e e e 7
3 Contributors 9
4 API Documentation 11
4.1 drest.apil .« . v v e e e e e e 11
42 dAresSt.eXC v v v v v it e e e e e e 14
43 drest.interface i e e e e e e e 15
4.4 drest.meta e e 15
45 drest.request e e e e e 15
4.6 drest.resSPONSE . . v v v v v it et e e e e e e e e e e e e 18
477 drest.TeSOULCE . « v v v v v i e i et e e e e e e e e e e e e e e e e e e 18
48 drest.serialization i e e e e e e e e 20
5 Usage Documentation 23
5.1 Installation e e e e e e e e e e e 23
5.2 Quickstart Guide L L e e e e e e e e 24
5.3 Working With Django TastyPie e 27
54 Customizing dRESt L e e e e e e e e 27
5.5 Debugging Requests e e e e e e e e e 28
6 Indices and tables 31
Python Module Index 33

dRest Documentation, Release 0.9.13

dRest is a configurable HTTP/REST client library for Python. It’s goal is to make the creation of API clients dead
simple, without lacking features. Key Features:

* Light-weight API Client Library, implementing REST by default
* Native support for the Django TastyPie API Framework
* Only one external dependency on httplib2
» Key pieces of the library are customizable by defined handlers
* Interface definitions ensure handlers are properly implemented
* Tested against all major versions of Python versions 2.6 through 3.2
* 100% test coverage
Additional Links:
* RTFD: http://drest.rtfd.org/
* CODE: http://github.com/datafolklabs/drest/
* PYPI: http://pypi.python.org/pypi/drest/
* T-CI: http://travis-ci.org/#!/datafolklabs/drest
* HELP: drest@librelist.org

Contents:

Contents 1

http://travis-ci.org/#!/datafolklabs/drest
http://drest.rtfd.org/
http://github.com/datafolklabs/drest/
http://pypi.python.org/pypi/drest/
http://travis-ci.org/#!/datafolklabs/drest
mailto:drest@librelist.org

dRest Documentation, Release 0.9.13

2 Contents

CHAPTER 1

License

Copyright (c) 2011-2013, Data Folk Labs, LLC All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

 Neither the name of BJ Dierkes nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

dRest Documentation, Release 0.9.13

4 Chapter 1. License

CHAPTER 2

ChangelLog

All bugs/feature details can be found at:
https://github.com/derks/drest/issues/XXXXX
Where XXXXX is the ‘Issue #’ referenced below. Additionally, this change log is available online at:

http://drest.readthedocs.org/en/latest/changelog.html

2.1 0.9.13 - development (will be released as 0.9.14 or 1.0.0)

Bugs:
¢ None
Features:

* Display params after they are seralized/encoded in debug output.

2.2 0.9.12 - Nov 12, 2013

Bugs:
* Issue #26 - Fixed incorrect reference to serialiser in TastyPieResourceHandler
Features:
* Issue #23 - Ability to set request timeout. Default is to not timeout
* Issue #24 - Allow suppression of body in GET requests. Default is to not send the body in GET requests.
* Issue #25 - Added support for patch_list in TastyPieResourceHandler

2.3 0.9.10 - Jul 18, 2012

Bugs:
e Issue #20 - Should catch ServerNotFoundError
Feature Enhancements:

e Issue #17 - Use relative imports to make drest more portable

https://github.com/derks/drest/issues/XXXXX
http://drest.readthedocs.org/en/latest/changelog.html
https://github.com/derks/drest/issues/26
https://github.com/derks/drest/issues/23
https://github.com/derks/drest/issues/24
https://github.com/derks/drest/issues/25
https://github.com/derks/drest/issues/20
https://github.com/derks/drest/issues/17

dRest Documentation, Release 0.9.13

e Issue #19 - Added PATCH support for default REST resource.

2.4 0.9.8 - Jul 02, 2012

Bug Fixes:
e Issue #12 - Params are not added correctly to GET request
Feature Enhancements:

* Issue #15 - dRestResponse object should include response headers

2.5 0.9.6 - Mar 23, 2012

Bug Fixes:
* Issue #9 - GET params incorrectly stored as permanent _extra_url_params.
Feature Enhancements:
* Issue #4 - Better support for nested resource names.
o Issue #5, Issue #8 - Request object is now exposed publicly.
* Issue #6 - Add capability to suppress final forward-slash
* Issue #7 - Cache http object for improved performance.
Incompatible Changes:
* api._request is now api.request. api.request (old function) is now api.make_request()

* Lots of code refactoring.. numerous minor changes may break compatibility if using backend functions, but not
likely if accessing the high level api functions.

» Every request now returns a drest.response.ResponseHandler object rather than a (response, data) tuple.

2.6 0.9.4 - Feb 16, 2012

Bug Fixes:

* Issue #3 - TypeError: object.__init__ () takes no parameters
Feature Enhancements:

 Improved test suite, now powered by Django TastyPie!

* Added support for Basic HTTP Auth.
Incompatible Changes:

e drest.api.APLauth() now implements Basic HTTP Auth by default rather than just appending the
user/password/etc to the URL.

2.7 0.9.2 - Feb 01, 2012

* Initial Beta release. Future versions will detail bugs/features/etc.

6 Chapter 2. ChangelLog

https://github.com/derks/drest/issues/19
https://github.com/derks/drest/issues/12
https://github.com/derks/drest/issues/15
https://github.com/derks/drest/issues/9
https://github.com/derks/drest/issues/4
https://github.com/derks/drest/issues/5
https://github.com/derks/drest/issues/8
https://github.com/derks/drest/issues/6
https://github.com/derks/drest/issues/7
https://github.com/derks/drest/issues/3

CHAPTER 3

Contributors

BJ Dierkes (Creator/Primary Developer)
Andrew Alcock

Zenobius Jiricek

Oliver Drake

Rodrigo Reis

dRest Documentation, Release 0.9.13

8 Chapter 3. Contributors

CHAPTER 4

API Documentation

4.1 drest.api

dRest core API connection library.

class drest .api .API (baseurl=None, **kw)
The API class acts as a high level ‘wrapper’ around multiple lower level handlers. Most of the meta argu-
ments are optionally passed to one or more handlers upon instantiation. All handler classes must be passed
un-instantiated.

Arguments:
baseurl Translated to self.baseurl (for convenience).
Optional Arguments and Meta:
debug Boolean. Toggle debug console output. Default: False.
baseurl The base url to the API endpoint.

request_handler The Request Handler class that performs the actual HTTP (or other) requests.
Default: drest.request.RequestHandler.

resource_handler The Resource Handler class that is used when api.add_resource is called. De-
fault: drest.resource.ResourceHandler.

response_handler An un-instantiated Response Handler class used to return responses to the caller.
Default: drest.response.ResponseHandler.

serialization_handler An un-instantiated Serialization Handler class used to serialize/deserialize
data. Default: drest.serialization.JsonSerializationHandler.

ignore_ssl_validation Boolean. Whether or not to ignore ssl validation errors. Default: False
serialize Boolean. Whether or not to serialize data before sending requests. Default: False.

deserialize Boolean. Whether or not to deserialize data before returning the Response object. De-
fault: True.

trailing_slash Boolean. Whether or not to append a trailing slash to the request url. Default: True.

extra_headers A dictionary of key value pairs that are added to the HTTP headers of every request.
Passed to request_handler.add_header().

extra_params A dictionary of key value pairs that are added to the POST, or ‘payload’ data sent
with every request. Passed to request_handler.add_param().

dRest Documentation, Release 0.9.13

extra_url_params A dictionary of key value pairs that are added to the GET/URL parameters of
every request. Passed to request_handler.add_extra_url_param().

timeout The amount of seconds where a request should timeout. Default: 30
Usage

import drest

Create a generic client api object
api = drest.API('http://localhost:8000/api/vl/")

Or something more customized:

api = drest.API(
baseurl="http://localhost:8000/api/vl/",
trailing_slash=False,
ignore_ssl_validation=True,

)

Or even more So:
class MyAPT (drest.APTI):
class Meta:

baseurl = 'http://localhost:8000/api/v1/’
extra_headers = dict (MyKey=’Some Value For Key’)
extra_params = dict (some_param='some_value’)

request_handler = MyCustomRequestHandler
api = MyAPI()

By default, the API support HTTP Basic Auth with username/password.
api.auth(’ john.doe’, ’'password’)

Make calls openly
response = api.make_request ('GET’, ' /users/1/")

Or attach a resource
api.add_resource ('users’)

Get available resources
api.resources

Get all objects of a resource
response = api.users.get ()

Get a single resource with primary key ’1’
response = api.users.get (1)

Update a resource with primary key ’1’
response = api.users.get (1)

updated_data = response.data.copy ()
updated_data[’ first_name’] = ’“John’
updated_datal[’ last_name’] = ’"Doe’

response = api.users.put (data[’id’], updated_data)

Create a resource

user_data = dict (
username=’john.doe’,
password="oober-secure-password’,
first_name=’John’,

10 Chapter 4. API Documentation

dRest Documentation, Release 0.9.13

last_name=’Doe’,

)

response = apil.users.post (user_data)

Delete a resource with primary key "1’
response = api.users.delete(l)

add_resource (name, resource_handler=None, path=None)
Add a resource handler to the api object.
Required Arguments:

name The name of the resource. This is generally the basic name of the resource on the API. For
example ‘/api/vO/users/” would likely be called ‘users’ and will be accessible as ‘api.users’
from which additional calls can be made. For example ‘api.users.get()’.

Optional Arguments:
resource_handler The resource handler class to use. Defaults to self._meta.resource_handler.
path The path to the resource on the API (after the base url). Defaults to ‘/<name>/".

Nested Resources:

It is possible to attach resources in a ‘nested’ fashion. For example passing a name of ‘my.nested.users’
would be accessible as api.my.nested.users.get().

Usage:

api.add_resource (' users’)
response = api.users.get ()

Or for nested resources
api.add_resource ('my.nested.users’, path=’/users/’)
response = api.my.nested.users.get ()

auth (user, password, **kw)
This authentication mechanism implements HTTP Basic Authentication.
Required Arguments:
user The API username.
password The password of that user.

class drest .api.TastyPieAPI (*args, **kw)
This class implements an API client, specifically tailored for interfacing with TastyPie.

Optional / Meta Arguments:
auth_mech The auth mechanism to use. One of ["basic’, ‘api_key’]. Default: ‘api_key’.

auto_detect_resources Boolean. Whether or not to auto detect, and add resource objects to the api.
Default: True.

Authentication Mechanisms

Currently the only supported authentication mechanism are:
*ApiKeyAuthentication
*BasicAuthentication

Usage

4.1. drest.api 11

http://django-tastypie.readthedocs.org/en/latest

dRest Documentation, Release 0.9.13

Please note that the following example use ficticious resource data. What is returned, and sent to the API is
unique to the API itself. Please do not copy and paste any of the following directly without modifying the
request parameters per your use case.

Create the client object, and authenticate with a user/api_key pair by default:

import drest
apl = drest.api.TastyPieAPI ('http://localhost:8000/api/v0/")
api.auth(’ john.doe’, ’34547a497326dde80bcaf8bceed3e3dlb5f24cc9’)

OR authenticate against HTTP Basic Auth:

import drest

api = drest.api.TastyPieAPI('http://localhost:8000/api/v0/",
auth_mech="basic’)

api.auth(’ john.doe’, ’'my_password’)

As drest auto-detects TastyPie resources, you can view those at:

api.resources

And access their schema:

api.users.schema

As well as make the usual calls such as:

api.users.get ()

api.users.get (<pk>)
api.users.put (<pk>, data_dict)
api.users.post (data_dict)
api.users.delete (<pk>)

What about filtering? (these depend on how the API is configured):

api.users.get (params=dict (username=’"admin’))
api.users.get (params=dict (username__icontains=’admin’))

See drest .api.API for more standard usage examples.

auth (*args, **kw)
Authenticate the request, determined by Meta.auth_mech. Arguments and Keyword arguments are just
passed to the auth_mech function.

find resources ()
Find available resources, and add them via add_resource().

4.2 drest.exc

exception drest . exc.dRestAPIError (msg)
dRest API Errors.

exception drest .exc.dRestError (msg)
Generic dRest Errors.

exception drest . exc.dRestInterfaceError (msg)
dRest Interface Errors.

12 Chapter 4. API Documentation

http://django-tastypie.readthedocs.org/en/latest/resources.html#basic-filtering

dRest Documentation, Release 0.9.13

exception drest .exc.dRestRequestError (msg, response)
dRest Request Errors.

exception drest . exc.dRestResourceError (msg)
dRest Resource Errors.

4.3 drest.interface

class drest.interface.Attribute (description)
Defines an Interface attribute.

Usage:

from drest import interface

class MyInterface (interface.Interface):
my_attribute = interface.Attribute ("A description of my_attribute.")

class drest .interface.Interface
This is an abstract base class that all interface classes should subclass from.

drest.interface.validate (interface, obj, members, metas= [])
A wrapper to validate interfaces.

Required Arguments:
interface The interface class to validate against
obj The object to validate.
members A list of object members that must exist.
Optional Arguments:

metas A list of meta parameters that must exist.

4.4 drest .meta

dRest core meta functionality. Barrowed from http://slumber.in/.

class drest .meta.Meta (**kw)
Model that acts as a container class for a meta attributes for a larger class. It stuffs any kwarg it gets in it’s init
as an attribute of itself.

class drest .meta.MetaMixin (*args, **kw)
Mixin that provides the Meta class support to add settings to instances of slumber objects. Meta settings cannot
start witha _.

4.5 drest.request

class drest . request . IRequest
This class defines the Request Handler Interface. Classes that implement this handler must provide the methods
and attributes defined below.

All implementations must provide sane ‘default’ functionality when instantiated with no arguments. Meaning,
it can and should accept optional parameters that alter how it functions, but can not require any parameters.

4.3. drest.interface 13

http://slumber.in/

dRest Documentation, Release 0.9.13

Implementations do not subclass from interfaces.

add_header (key, value)
Add extra headers to pass along with every request.

Required Arguments:
key The key of the header to add.

value The value of the header to add.

add_param (key, value)
Add extra parameters to pass along with every request. These are passed with the request ‘payload’ (seri-

alized if a serialization handler is enabled). With GET requests they are appended to the URL.
Required Arguments:

key The key of the parameter to add.

value The value of the parameter to add.

add_url_param (key, value)
Similar to ‘add_params’, however this function adds extra parameters to the url for every request. These

are not passed with the request ‘payload’ (serialized if a serialization handler is enabled) except for GET

requests.
Required Arguments:
key The key of the parameter to add.

value The value of the parameter to add.

handle_response (response_object)
Called after the request is made. This is a convenient place for developers to handle what happens during

every request per their application needs.

Required Arguments:
response_object The response object created by the request.

make_request (method, path, params=None, headers=None)
Make a request with the upstream API.

Required Arguments:
method The HTTP method to request as. I.e. [GET’, ‘POST’, ‘PUT’, ‘DELETE’, ..’].

path The of the request url after the baseurl.

Optional Arguments:
params Dictionary of parameters to pass with the request. These will be serialized if configured

to serialize.

headers Dictionary of headers to pass to the request.

class drest . request .RequestHandler (**kw)
Generic class that handles HTTP requests. Uses the Json Serialization handler by default, but only ‘deserializes’

response content.
Optional Arguments / Meta:
debug Boolean. Toggle debug console output. Default: False.

ignore_ssl_validation Boolean. Whether or not to ignore ssl validation errors. Default: False

14 Chapter 4. API Documentation

dRest Documentation, Release 0.9.13

response_handler An un-instantiated Response Handler class used to return responses to the caller.
Default: drest.response.ResponseHandler.

serialization_handler An un-instantiated Serialization Handler class used to serialize/deserialize
data. Default: drest.serialization.JsonSerializationHandler.

serialize Boolean. Whether or not to serialize data before sending requests. Default: False.

deserialize Boolean. Whether or not to deserialize data before returning the Response object. De-
fault: True.

trailing_slash Boolean. Whether or not to append a trailing slash to the request url. Default: True.
timeout The amount of seconds where a request should timeout. Default: None

add_header (key, value)
Adds a key/value to self._extra_headers, which is sent with every request.

Required Arguments:
key The key of the parameter.
value The value of ‘key’.

add_param (key, value)
Adds a key/value to self._extra_params, which is sent with every request.

Required Arguments:
key The key of the parameter.
value The value of ‘key’.

add_url_param (key, value)
Adds a key/value to self._extra_url_params, which is sent with every request (in the URL).

Required Arguments:
key The key of the parameter.
value The value of ‘key’.

handle_response (response_object)
A simple wrapper to handle the response. By default raises exc.dRestRequestError if the response code is
within 400-499, or 500. Must return the original, or modified, response object.

Required Arguments:
response_object The response object created by the request.

make_request (method, url, params=None, headers=None)
Make a call to a resource based on path, and parameters.

Required Arguments:
method One of HEAD, GET, POST, PUT, PATCH, DELETE, etc.

url The full url of the request (without any parameters). Any params (with GET method) and
self.extra_url_params will be added to this url.

Optional Arguments:
params Dictionary of additional (one-time) keyword arguments for the request.

headers Dictionary of additional (one-time) headers of the request.

4.5.

drest.request 15

dRest Documentation, Release 0.9.13

set_auth_credentials (user, password)
Set the authentication user and password that will be used for HTTP Basic and Digest Authentication.

Required Arguments:
user The authentication username.
password That user’s password.

class drest . request . TastyPieRequestHandler (**kw)
This class implements the IRequest interface, specifically tailored for interfacing with TastyPie.

See drest .request .RequestHandler for Meta options and usage.

drest.request.validate (0bj)
Validates a handler implementation against the IRequest interface.

4.6 drest .response

class drest . response.IResponse
This class defines the Response Handler Interface. Classes that implement this handler must provide the methods
and attributes defined below.

All implementations must provide sane ‘default’ functionality when instantiated with no arguments. Meaning,
it can and should accept optional parameters that alter how it functions, but can not require any parameters.

Implementations do not subclass from interfaces.

drest.response.validate (0bj)
Validates a handler implementation against the IResponse interface.

4.7 drest .resource

class drest .resource.IResource
This class defines the Resource Handler Interface. Classes that implement this handler must provide the methods
and attributes defined below.

All implementations must provide sane ‘default’ functionality when instantiated with no arguments. Meaning,
it can and should accept optional parameters that alter how it functions, but can not require any parameters.

Implementations do not subclass from interfaces.

class drest . resource.RESTResourceHandler (api_obj, name, path, **kw)
This class implements the IResource interface, specifically for interacting with REST-like resources. It provides
convenient functions that wrap around the typical GET, PUT, POST, DELETE actions.

Optional Arguments / Meta:
api_obj The api (parent) object that this resource is being attached to.
name The name of the resource on the API.
path The path to the resource (after api.baseurl).

Usage:

import drest

class MyAPT (drest.api.API):

16 Chapter 4. API Documentation

http://django-tastypie.readthedocs.org/en/latest

dRest Documentation, Release 0.9.13

class Meta:
resource_handler = drest.resource.RESTResourceHandler

create (params=None)
A synonym for self.post().

delete (resource_id, params=None)
Delete resource record.

Required Arguments:
resource_id The resource id
Optional Arguments:

params Some resource might allow additional parameters. For example, the user resource has
a ‘rdikwid’ (really delete I know what I'm doing) option which causes a user to really be
deleted (normally deletion only sets the status to ‘Deleted’).

get (resource_id=None, params=None)
Get all records for a resource, or a single resource record.

Optional Arguments:
resource_id The resource id (may also be a label in some environments).
params Additional request parameters to pass along.

patch (resource_id, params=None)
Update only specific items of an existing resource.

Required Arguments:
resource_id The id of the resource to update.
params A dictionary of parameters (different for every resource).

post (params=None)
Create a new resource.

Required Arguments:
params A dictionary of parameters (different for every resource).

put (resource_id, params=None)
Update an existing resource.

Required Arguments:
resource_id The id of the resource to update.
params A dictionary of parameters (different for every resource).

update (resource_id, params=None)
A synonym for self.put().

class drest . resource.ResourceHandler (api_obj, name, path, **kw)
This class acts as a base class that other resource handler should subclass from.

filter (params)
Give the ability to alter params before sending the request.

Required Arguments:

params The list of params that will be passed to the endpoint.

4.7. drest.resource 17

dRest Documentation, Release 0.9.13

class drest .resource.TastyPieResourceHandler (api_obj, name, path, **kw)
This class implements the IResource interface, specifically tailored for interfacing with TastyPie.

class Meta
Handler meta-data (can be passed as keyword arguments to the parent class).

collection_name = ‘objects’
The name of the collection. Default: objects

request
The request handler used to make requests. Default: TastyPieRequestHandler.

alias of TastyPieRequestHandler

TastyPieResourceHandler.get_by_uri (resource_uri, params=None)
A wrapper around self.get() that accepts a TastyPie ‘resource_uri’ rather than a ‘pk’ (primary key).

Parameters
¢ resource_uri — The resource URI to GET.
e params — Any additional keyword arguments are passed as extra request parameters.
Usage:

import drest

apl = drest.api.TastyPieAPI ('http://localhost:8000/api/v0/")
api.auth (user=’ john.doe’,

api_key=’34547a497326dde80bcaf8bceed3e3dlb5f24cc9’)
response = api.users.get_by_uri(’/api/vl/users/234/")

TastyPieResourceHandler.patch_list (create_objects:[], delete_objects:[])

Tastypie resources have a patch_list method that allows you to create and delete bulk collections of objects.
This uses HTTP PATCH.

Parameters
* create_objects — List of objects to create in dict form.
* delete_objects — List of objects to delete in dict form.

TastyPieResourceHandler.schema
Returns the resources schema.

drest.resource.validate (0bj)
Validates a handler implementation against the IResource interface.

4.8 drest .serialization

class drest .serialization.ISerialization

This class defines the Serialization Handler Interface. Classes that implement this handler must provide the
methods and attributes defined below.

All implementations must provide sane ‘default’ functionality when instantiated with no arguments. Meaning,
it can and should accept optional parameters that alter how it functions, but can not require any parameters.

Implementations do not subclass from interfaces.

deserialize ()
Load a serialized string and return a dictionary of key/value pairs.

Required Arguments:

18 Chapter 4. API Documentation

http://django-tastypie.readthedocs.org/en/latest

dRest Documentation, Release 0.9.13

serialized_data A string of serialzed data.
Returns: dict

get_headers ()
Return a dictionary of additional headers to include in requests.

serialize ()
Dump a dictionary of values from a serialized string.

Required Arguments:
data_dict A data dictionary to serialize.
Returns: string

class drest .serialization.JsonSerializationHandler (**kw)

This handler implements the ISerialization interface using the standard json library.

class drest.serialization.SerializationHandler (**kw)
Generic Serialization Handler. Should be used to subclass from.

drest.serialization.validate (0bj)
Validates a handler implementation against the ISerialize interface.

4.8. drest.serialization

19

dRest Documentation, Release 0.9.13

20 Chapter 4. API Documentation

CHAPTER 5

Usage Documentation

Contents:

5.1 Installation

The following outlines installation of dRest. It is recommended to work out of a VirtualENV for development, which
is reference throughout this documentation. VirtualENV is easily installed on most platforms either with ‘easy_install’
or ‘pip’ or via your OS distributions packaging system (yum, apt, brew, etc).

5.1.1 Creating a Virtual Environment

$ virtualenv -—-no-site-packages ~/env/drest/
$ source ~/env/drest/bin/activate

When installing drest, ensure that your development environment is active by sourcing the activate script (as seen
above).

5.1.2 Installing Stable Versions From PyPi

(drest) $ pip install drest

5.1.3 Installing Development Version From Git

(drest) $ pip install -e git+git://github.com/derks/drest.git#egg=drest

5.1.4 Running Unit Tests in Development

To run tests, do the following from the ‘root’ directory of the drest source:

(drest) $./utils/run-tests.sh

For Python 3 testing, you will need to run ‘drest.mockapi’ manually via a seperate virtualenv setup for Python 2.6+
(in a separate terminal), and then run the test suite with the option ‘—without-mockapi’:

Terminal 1:

21

http://pypi.python.org/pypi/virtualenv

dRest Documentation, Release 0.9.13

$ virtualenv-2.7 ~/env/drest-py27/
$ source ~/env/drest-py27/bin/activate
(drest-py27) $./utils/run-mockapi.sh

Terminal 2:

$ virtualenv-3.2 ~/env/drest-py32/
$ source ~/env/drest-py32/bin/activate

(drest-py32) $./utils/run-tests.sh —--without-mockapi

5.2 Quickstart Guide

5.2.1 A REST Client Example

Note that the following is all fictitious data. What is received from and sent to an API is unique to every APIL. Do not
copy and paste these examples.

Connecting with an API

import drest
apli = drest.API('http://localhost:8000/api/v1/")

Authentication

By default, drest.api.APIL.auth() implements HTTP Basic Authentication. This is generally overridden however by
specific API’s that subclass from api.API().

api.auth(’ john.doe’, ’'my_password’)

Note that authentication may not be necessary for your use case, or for read-only API’s.

Making Requests
Requests can be made openly by specifying the method (GET, PUT, POST, DELETE, ...), as well as the path (after
the baseurl).

GET http://localhost:8000/api/vl1/users/1/
response = api.make_request ('GET’, ' /users/1/")

Additionally, you can add a resource which makes access to the API more native and programatic.

Add a basic resource (assumes path=’/users/’)
api.add_resource (' users’)

A list of available resources 1is available at:
api.resources

GET http://localhost:8000/api/vl1/users/

22 Chapter 5. Usage Documentation

dRest Documentation, Release 0.9.13

response = api.users.get ()

GET http://localhost:8000/api/v1/users/1/
response = api.users.get (1)

Creating a resource only requires a dictionary of ‘parameters’ passed to the resource:

user_data = dict(
username=’' john.doe’,
password=’'oober-secure—-password’,
first_name=’John’,
last_name=’'Doe’,

)

POST http://localhost:8000/api/vl/users/
response = api.users.post (user_data)

Updating a resource is as easy as requesting data for it, modifying it, and sending it back

response = api.users.get (1)
updated_data = response.data.copy ()
updated_data[’ first_name’] = ’7John’
updated_datal[’ last_name’] = ’'Doe’

PUT http://localhost:8000/api/vl/users/1/
response = api.users.put(l, updated_data)

Or you can simply ‘PATCH’ a resource:

PATCH http://localhost:8000/api/v1/users/1/
response = api.users.patch(l, dict (first_name=’Johnny’))

Deleting a resource simply requires the primary key:

DELETE http://localhost:8000/api/v1/users/1/
response = api.users.delete(1l)

5.2.2 Working With Return Data

Every call to an API by default returns a drest.response.ResponseHandler object. The two most useful members of
this object are:

* response.status (http status code)
* response.data (the data returned by the api)
* response.headers (the headers dictionary returned by the request)

If a serialization handler is used, then response.data will be the unserialized form (Python dict).

The Response Object

response = api.users.get ()
response.status # 200
response.data # dict
response.headers # dict

Developers can base conditions on the status of the response (or other fields):

5.2. Quickstart Guide 23

dRest Documentation, Release 0.9.13

response = api.users.get ()
if response.status != 200:
print "Uhoh.... we didn’t get a good response."

The data returned from a request is the data returned by the API. This is generally JSON, YAML, XML, etc... however
if a Serialization handler is enabled, this will be a python dictionary. See drest .serialization.

response.data:

{

u’meta’ :

u’previous’: None,
u’total_count’: 3,
u’offset’: 0O,
u’limit’: 20,
u’next’:

None

s
u’ objects’:

[

u’username’ : u’ john.doe’,

u’ first_name’: u’John’,

u’ last_name’ : u’Doe’,

u’ resource_pk’: 2,

u’last_login’: u’2012-01-26T01:21:20",
u’ resource_uri’: u’/api/vl/users/2/’,
u’id’: u’2’,

u’date_joined’: u’2008-09-04T14:25:29"

}
The above is fictitious data returned from a TastyPie API. What is returned by an API is unique to that API therefore

you should expect the ‘data’ to be different that the above.

5.2.3 Connecting Over SSL

Though this is documented elsewhere, it is a pretty common question. Often times API services are SSL enabled
(over https://) but do not possess a valid or active SSL certificate. Anytime an API service has an invalid, or usually
self-signed certificate, you will receive an SSL error similar to:

[Errno 1] _ssl.c:503: error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify fai.

In order to work around such situations, simply pass the following to your api:

apl = drest.API('https://example.com/api/v1/’, ignore_ssl_validation=True)

5.3 Working With Django TastyPie

dRest includes an API specifically built for the Django TastyPie API framework. It handles auto-detection of resources,
and their schema, as well as other features to support the interface including getting resource data by ‘resource_uri’.

24 Chapter 5. Usage Documentation

https://
http://django-tastypie.readthedocs.org/

dRest Documentation, Release 0.9.13

5.3.1 API Reference

* drest.api.TastyPieAPI
e drest.request.TastyPieRequestHandler

e drest.resource.TastyPieResourceHandler

5.4 Customizing dRest

Every piece of dRest is completely customizable by way of ‘handlers’.
API Reference:

e drest.api

e drest.resource

e drest.request

* drest.response

e drest.serialization

5.4.1 Example

The following is just a quick glance at what it would look to chain together a custom Serialization Handler, Request
Handler, Resource Handler, and finally a custom API client object. This is not meant to be comprehensive by any
means. In the real world, you will need to read the source code documentation listed above and determine a) what you
need to customize, and b) what functionality you need to maintain.

import drest

class MySerializationHandler (drest.serialization.SerializationHandler):
def serialize(self, data_dict):
do something to serialize data dictionary
pass

def deserialize(self, serialized_data):
do something to deserialize data
pass

class MyResponseHandler (drest.response.ResponseHandler)
def _ init_ (self, status, data, =*kw):
super (MyResponseHandler, self).__init__ (status, data, =xkw)
do something to customize the response handler

class MyRequestHandler (drest.request.RequestHandler) :
class Meta:
serialization_handler = MySerializationHandler
response_handler = MyResponseHandler

def handle_response(self, response):
do something to wrape every response
pass

class MyResourceHandler (drest.resource.ResourceHandler) :
class Meta:

5.4. Customizing dRest 25

dRest Documentation, Release 0.9.13

request_handler = MyRequestHandler

def some_custom_function(self, params=None) :
if params is None:

params = {}
do some kind of custom api call
return self.request ('GET’, ' /users/some_custom_function’, params)

class MyAPT (drest.api.API):
class Meta:
baseurl = 'http://example.com/api/vl/’
resource_handler = MyResourceHandler
request_handler = MyRequestHandler

def auth(self, =xargs, xxkw):
do something to customize authentication
pass
api = MyAPI()
Add resources
api.add_resource ('users’)

api.add_resource (' projects’)

GET http://example.com/api/vl1/users/
api.users.get ()

GET http://example.com/api/vl1/users/133/
api.users.get (133)

PUT http://example.com/api/vl1/users/133/
api.users.put (133, data_dict)

POST http://example.com/api/vl/users/
api.users.post (data_dict)

DELETE http://example.com/api/vl/users/133/
api.users.delete (133)

GET http://example.com/api/vl/users/some_custom_function/
api.users.some_custom_function ()

Note that the id ‘133’ above is the fictitious id of a user resource.

5.5 Debugging Requests

Often times in development, making calls to an API can be obscure and difficult to work with especially when receiving
500 Internal Server Errors with no idea what happens. In browser development, most frameworks like Django or the
like provide some sort of debugging interface allowing developers to analyze tracebacks, and what not. Not so much
when developing command line apps or similar.

5.5.1 Enabling Debug Output

In order to enable DEBUG output for every request, simply set the ‘DREST_DEBUG’ environment variable to 1:

26 Chapter 5. Usage Documentation

dRest Documentation, Release 0.9.13

S set DREST_DEBUG=1

$ python test.py
DREST_DEBUG: method=POST url=http://localhost:8000/api/v0/systems/ params={} headers={’Content-Type’

In the above, test.py just made a simple api.system.post() call which triggered DREST_DEBUG output. In the output
you have access to a number of things:

method This is the method used to make the request.

url The full url path of the request

params Any parameters passed with the request

headers Any headers passed with the request
Once done debugging, just disable DREST_DEBUG:

$ unset DREST_DEBUG

5.5.2 Viewing Upstream Tracebacks

If the error is happening server side, like a 500 Internal Server Error, you will likely receive a traceback in the return
content (at least during development). This of course depends on the API you are developing against, however the
following is common practice in development:

try:
response = apil.my_resource.get ()
except drest.exc.dRestRequestError as e:
print e.response.status
print e.response.data
print e.response.headers

The above gives you the response object, as well as the content (data)... this is useful because the exception is triggered
in drest code and not your own (therefore bringing the response object back down the stack where you can use it).

5.5. Debugging Requests 27

dRest Documentation, Release 0.9.13

28 Chapter 5. Usage Documentation

CHAPTER 6

Indices and tables

* genindex
* modindex

e search

29

dRest Documentation, Release 0.9.13

30 Chapter 6. Indices and tables

Python Module Index

drest
drest
drest
drest
drest
drest
drest

.api, 11
.exc, 14
.interface, 15
.meta, 15
.request, 15
.resource, 18
.response, 18
drest.

serialization, 20

31

	License
	ChangeLog
	0.9.13 - development (will be released as 0.9.14 or 1.0.0)
	0.9.12 - Nov 12, 2013
	0.9.10 - Jul 18, 2012
	0.9.8 - Jul 02, 2012
	0.9.6 - Mar 23, 2012
	0.9.4 - Feb 16, 2012
	0.9.2 - Feb 01, 2012

	Contributors
	API Documentation
	drest.api
	drest.exc
	drest.interface
	drest.meta
	drest.request
	drest.response
	drest.resource
	drest.serialization

	Usage Documentation
	Installation
	Quickstart Guide
	Working With Django TastyPie
	Customizing dRest
	Debugging Requests

	Indices and tables
	Python Module Index

